Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Gene ; 885: 147720, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37597707

RESUMO

Copper-transporting ATPases are a group of heavy metal-transporting proteins and which can be found in all living organisms. In animals, they are generally referred to as ATP7 proteins and are involved in many different physiological processes including the maintaining of copper homeostasis and the supply of copper to cuproenzymes. A single ATP7 gene is present in non-chordate animals while it is divided into ATP7A and ATP7B in chordates. In humans, dysfunction of ATP7 proteins can lead to severe genetic disorders, such as, Menkes disease and Wilson's disease, which are characterized by abnormal copper transport and accumulation, causing significant health complications. Therefore, there is a substantial amount of research on ATP7 genes and ATP7 proteins in humans and mice to understand pathophysiological conditions and find potential therapeutic interventions. Copper-transporting ATPases have also been investigated in some non-mammalian vertebrates, protostomes, single-cellular eukaryotes, prokaryotes, and archaea to gain useful evolutionary insights. However, ATP7 function in many animals has been somewhat neglected, particularly in non-bilaterians. Previous reviews on this topic only broadly summarized the available information on the function and evolution of ATP7 genes and ATP7 proteins and included only the classic vertebrate and invertebrate models. Given this, and the fact that a considerable amount of new information on this topic has been published in recent years, the present study was undertaken to provide an up-to-date, comprehensive summary of ATP7s/ATP7s and give new insights into their evolutionary relationships. Additionally, this work provides a framework for studying these genes and proteins in non-bilaterians. As early branching animals, they are important to understand the evolution of function of these proteins and their important role in copper homeostasis and neurotransmission.


Assuntos
Cobre , Neurônios , Humanos , Animais , Camundongos , ATPases Transportadoras de Cobre/genética , Transmissão Sináptica , Archaea
2.
Rev. Fac. Cienc. Méd. Univ. Cuenca ; 37(3): 53-62, dic. 2019. ilus, tab
Artigo em Espanhol | LILACS | ID: biblio-1100437

RESUMO

La enfermedad de Wilson es una condición genética autosómica recesiva poco frecuente. Se ha identificado el gen ATP7B como el que codifica la proteína transportadora de cobre y su deficiencia lleva al acúmulo del metal en el cerebro, hígado y otros órganos vitales. Su diagnóstico clínico precoz es esencial para mejorar la calidad de vida del paciente. A continuación, se presenta el caso de un paciente de 20 años, masculino, con un cuadro clínico de 2 años de evolución de desinhibición, impulsividad, anartria y apraxia de la marcha, movimientos distónicos faciales y en 4 extremidades. Al examen físico se evidenció el anillo de Kayser Flescher a nivel ocular. En Resonancia Magnética Encefálica hiperintensidad en ganglios de la base y mesencéfalo en T2. Ceruloplasmina en suero 4.08 mg/dL. Cobre sérico 26.03ug/dL y cobre en orina de 24 horas 224.30ug/ 24h. Se confirma el diagnóstico de Enfermedad de Wilson, tratándose con D- Penicilamina, evidenciándose una evolución adecuada, con mejoría notable del cuadro neurológico. El tratamiento precoz permite una evolución favorable temprana del paciente, disminuyendo las secuelas neurológicas secundarias a la enfermedad; de ahí la importancia del reporte del presente caso.(AU)


BackgroundWilson's disease is a rare autosomal recessive genetic condition. The ATP7B gene has been identified as the one that encodes the copper transport protein and its deficiency leads to the accumulation of metal in the brain, liver and other vital organs. Your early clinical diagnosis is essential to improve the quality of life of the patient. Following we present the clinical case of a 20-year-old male patient who since 2 years ago, presented disinhibition, impulsivity, anartria and gait apraxia, facial dystonic movements and in extremities. To the physical exam, Kayser Flescher ring was present. In Brain Magnetic Resonance hyperintensity in Basal Ganglia and Midbrain. Serum Ceruloplasmin 4.08. Serum Copper 26.03. Urinary Cupper 224.30. The diagnosis of Wilson's disease is confirmed, treating with D-Penicillamine, evidencing an adequate evolution, with notable improvement of the neurological symptoms. Early treatment allows a favorable early evolution of the patient, reducing the neurological sequelae secondary to the disease; so that the importance of the report of this case.(AU)


Assuntos
Humanos , Masculino , Adulto , ATPases Transportadoras de Cobre/análise , Degeneração Hepatolenticular/complicações , Degeneração Hepatolenticular/diagnóstico por imagem , Ceruloplasmina/química
3.
Exp Biol Med (Maywood) ; 243(9): 780-785, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29763364

RESUMO

The distribution of copper (Cu) in the biological system is regulated by Cu transporters and chaperones. It has been known for a long time that myocardial ischemia is accompanied by the loss of Cu from the heart, but the mechanism by which this occurs remains unknown. The present study was undertaken to understand the relationship between Cu loss and alterations in Cu transporters during the pathogenesis of myocardial ischemia. Male mice (C57 BL/6J) were subjected to left anterior descending (LAD) coronary artery ligation to induce myocardial ischemia. Changes in Cu concentrations in serum and hearts were determined from blood and tissue samples harvested at different time points for a total of 28 days after the operation. Cu concentrations in the ischemic myocardium were continuously decreased starting at the fourth day after LAD artery ligation, gradually depleted by more than 80% of the normal level at the 10th day, and remained at the lowest level (about 20% of normal levels) thereafter. Serum Cu concentrations were correspondingly increased starting at the fourth day, reached to the highest level between day 7 and 10, and gradually recovered to the normal level until 21st day after the operation. Along with the same time course, the intracellular Cu exporter copper metabolism MURR domain 1 (COMMD1) was significantly and sustainably increased, but ATP7A and ATP7B were not significantly changed in the ischemic myocardium. These results suggest that during the pathogenesis of myocardial ischemia, COMMD1 would play a critical role in exporting Cu from the ischemic myocardium to the blood. Impact statement In this work, we found that copper efflux from the ischemic heart leads to the elevation of serum copper concentrations, addressing a long-term question related to serum copper elevation in myocardial ischemia patients. The efflux of copper from the ischemic heart results at least in part from the upregulation of copper metabolism MURR domain 1 (COMMD1) in the heart upon ischemic insult. This work provides a novel insight into copper homeostasis and alteration in cardiovascular system.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cobre/sangue , Isquemia Miocárdica/sangue , Miocárdio/metabolismo , Animais , ATPases Transportadoras de Cobre/metabolismo , Masculino , Camundongos , Isquemia Miocárdica/patologia , Miocárdio/patologia
4.
J Trace Elem Med Biol ; 43: 126-134, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28089327

RESUMO

Copper metabolism disturbances in mammary gland (MG) cells have severe consequences in newborns. The mechanism that controls the balance of copper in the MG has not been thoroughly characterized. Four primary copper homeostasis genes in mammals: (1) ceruloplasmin (Cp) encoding multifunction multicopper blue (ferr)oxidase; (2) CTR1 encoding high affinity copper importer 1; and (3 and 4) two similar genes encoding Cu(I)/Cu(II)-ATPases P1 type (ATP7A and ATP7B) responsible for copper efflux from the cells and metallation of cuproenzymes formed in the Golgi complex are expressed in MG. This study aimed to characterize expression of these genes during pregnancy, lactation and forced involution in the rat MG. We found that Cp anchored to the plasma membrane and ATP7A were expressed during pregnancy and lactation. Soluble Cp and ATP7B were highly expressed in lactating MG decreasing to its ending. CTR1 activity increased during MG growth and reached its maximum at postpartum and then it decreased until the end of lactation. During early forced MG involution, Cp gene expression persisted; while a form of Cp that lacked exon 18 appeared. We suggest that Cp gene expressional changes at the transcriptional and posttranscriptional level reflect various physiological functions of Cp proteins during MG remodeling.


Assuntos
Ceruloplasmina/metabolismo , Lactação/metabolismo , Glândulas Mamárias Humanas/metabolismo , Animais , Western Blotting , Membrana Celular/metabolismo , Ceruloplasmina/genética , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Feminino , Humanos , Lactação/genética , Gravidez , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...